# Shoelace Length Formulas All of the underlying mathematical formulas from the Shoelace Length Calculator are shown here both in mathematical notation and in generic notation (colored GREEN) compatible with spreadsheet software (like Microsoft Excel).

## Formula Notation

NOTE: These length formulas are based on five measurements:

P = Pairs of eyelets;
H = Horizontal spacing;
V = Vertical spacing;
W = Width of lugs;
L = Length of ends.

See the Accurate Shoelace Lengths page for more details.

## Formulas for Total Shoelace Length

### Angled Checker Lacing (each lace)

=H+(V×4+√(H²+(V×3)²)×6)×INT((P−1)÷5)+(√(H²+V²)×((P−1) MODULO 5)+L)×2

=H+(V*4+SQRT(H*H+V*V*9)*6)*INT((P-1)/5)+(SQRT(H*H+V*V)*MOD((P-1),5)+L)*2

### Army Lacing (same formula as Bow Tie Lacing)

Method 1 (Verticals at bottom, Shorter):

=(H+V×INT(P÷2)+√(H²+V²)×INT((P−1)÷2)+L)×2

=(H+V*INT(P/2)+SQRT(H*H+V*V)*INT((P-1)/2)+L)*2

Method 2 (Diagonals at bottom, Longer):

=(H+V×INT((P−1)÷2)+√(H²+V²)×INT(P÷2)+L)×2

=(H+V*INT((P-1)/2)+SQRT(H*H+V*V)*INT(P/2)+L)*2

(For odd numbers of eyelet pairs, both formulas work out the same)

### Asterisk Lacing

=(H×INT(P÷6+1)+√(H²+(V×2)²)×P÷3+L)×2+V×(P×4÷3−2)

=(H*INT(P/6+1)+SQRT(H*H+V*V*4)*P/3+L)*2+V*(P*4/3-2)

(Only applicable for multiples of three eyelet pairs: P = 3, 6, 9, 12, etc.)

### Bow Tie Lacing (same formula as Army Lacing)

Method 1 (Verticals at bottom, Shorter):

=(H+V×INT(P÷2)+√(H²+V²)×INT((P−1)÷2)+L)×2

=(H+V*INT(P/2)+SQRT(H*H+V*V)*INT((P-1)/2)+L)*2

Method 2 (Diagonals at bottom, Longer):

=(H+V×INT((P−1)÷2)+√(H²+V²)×INT(P÷2)+L)×2

=(H+V*INT((P-1)/2)+SQRT(H*H+V*V)*INT(P/2)+L)*2

(For odd numbers of eyelet pairs, both formulas work out the same)

### CAF Combat Boot Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

=H+V×((P−1)×2−(P MODULO 2))+√(H²+V²)×((P MODULO 2)+(P−2)×1.03)+√(H²+(V×(P−2))²)×1.03+L×2

=H+V*((P-1)*2-MOD(P,2))+SQRT(H*H+V*V)*(MOD(P,2)+(P-2)*1.03)+SQRT(H*H+(V*(P-2))*(V*(P-2)))*1.03+L*2

(This approximates 3% longer diagonals to allow for loop unders)

### Checkerboard Lacing

Lace 1 (Horizontal):

=H×P+V×(P−1)+L×2

=H*P+V*(P-1)+L*2

(Note that End Lengths can be much shorter than other methods)

Lace 2 (Vertical):

=V×1.05×(P−1)×(Vertical Passes)+L×2

=V*1.05*(P-1)*(Vertical Passes)+L*2

(This approximates 5% longer verticals to allow for weaving)

### Chevron Lacing (same formula as Gap Lacing)

=(H+V+√(H²+V²)×(P−2)+L)×2

=(H+V+SQRT(H*H+V*V)*(P-2)+L)*2

### C.I.A. Lacing

Method 1, 2 or 3 (Low, Mid or High X):

=H×(P−2)+√(H²+V²)×6+√(H²+(V×2)²)×(P−4)+L×2

=H*(P-2)+SQRT(H*H+V*V)*6+SQRT(H*H+V*V*4)*(P-4)+L*2

Method 4 or 5 (Two Xs):

=H×(P−3)+√(H²+V²)×8+√(H²+(V×2)²)×(P−5)+L×2

=H*(P-3)+SQRT(H*H+V*V)*8+SQRT(H*H+V*V*4)*(P-5)+L*2

Method 6 (Three or more Xs):

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

Method 7 (Bottom X):

=H×(P−1)+√(H²+V²)×4+√(H²+(V×2)²)×(P−3)+L×2

=H*(P-1)+SQRT(H*H+V*V)*4+SQRT(H*H+V*V*4)*(P-3)+L*2

### Commando Lacing

=H×P+V×(P−1)+L+75 mm

=H*P+V*(P-1)+L+75

(This allows 75 mm = 3 inches for the anchoring knot)

### Corset Lacing

=H×3+√(H²+V²)×(P−1)×2+L×4

=H*3+SQRT(H*H+V*V)*(P-1)*2+L*4

### Criss Cross Lacing

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### Cyclone Fence Lacing

=H+V×((P−1)×2−(P MODULO 2))+√(H²+V²)×(2.06−(P MODULO 2)×0.03)+√(H²+(V×2)²)×1.06×(P−3)+L×2

=H+V*((P-1)*2-MOD(P,2))+SQRT(H*H+V*V)*(2.06-MOD(P,2)*0.03)+SQRT(H*H+V*V*4)*1.06*(P-3)+L*2

(This approximates 3% longer diagonals to allow for loop unders)

### Dense Checker Lacing

Lace 1 (Horizontal):

=(H×(P−1)+L)×2+V×((P×2)−3)

=(H*(P-1)+L)*2+V*((P*2)-3)

(Note that End Lengths can be much shorter than other methods)

Lace 2 (Vertical) (same formula as Lace 2 of Checkerboard Lacing):

=V×1.05×(P−1)×(Vertical Passes)+L×2

=V*1.05*(P-1)*(Vertical Passes)+L*2

(This approximates 5% longer verticals to allow for weaving)

### Display Shoe Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### Double Lacing

Lace 1 (Bottom, Longer):

=(H+√(H²+(V×2)²)×INT((P−1)÷2)+L)×2

=(H+SQRT(H*H+V*V*4)*INT((P-1)/2)+L)*2

Lace 2 (Second, Shorter):

=(H+√(H²+(V×2)²)×INT((P−2)÷2)+L)×2

=(H+SQRT(H*H+V*V*4)*INT((P-2)/2)+L)*2

(For even numbers of eyelet pairs, both formulas work out the same)

### Double Back Lacing

Method 1 (Verticals at bottom, Shorter):

=(H+V+√(H²+(V×2)²)×(P−2)+L)×2

=(H+V+SQRT(H*H+V*V*4)*(P-2)+L)*2

Method 2 (Diagonals at bottom, Longer):

=(H+√(H²+V²)+√(H²+(V×2)²)×(P−2)+L)*2

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)*(P-2)+L)*2

### Double Cross Lacing

Method 1 (Even number of eyelet pairs, Skip eyelets near ends, Shorter):

=(H+L)×2+√(H²+V²)×(P−4)+√(H²+(V×3)²)×(P−2)

=(H+L)*2+SQRT(H*H+V*V)*(P-4)+SQRT(H*H+V*V*9)*(P-2)

Method 2 (Even number of eyelet pairs, Use all eyelets, Longer):

=(H+L)×2+√(H²+V²)×(P−2)+√(H²+(V×2)²)×4+√(H²+(V×3)²)×(P−4)

=(H+L)*2+SQRT(H*H+V*V)*(P-2)+SQRT(H*H+V*V*4)*4+SQRT(H*H+V*V*9)*(P-4)

Method 3 (Odd number of eyelet pairs, Skip eyelets near one end):

=(H+√(H²+(V×2)²)+L)×2+(√(H²+V²)+√(H²+(V×3)²))×(P−3)

=(H+SQRT(H*H+V*V*4)+L)*2+(SQRT(H*H+V*V)+SQRT(H*H+V*V*9))*(P-3)

### Double Helix Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### Double Sided Lacing (each lace, same as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### End Shortening Lacing

=H×(P+(P MODULO 2))+V×((P−(P MODULO 2))²÷2+(P MODULO 2)×2)+L×2

=H*(P+MOD(P,2))+V*((P-MOD(P,2))*(P-MOD(P,2))/2+MOD(P,2)*2)+L*2

### Escher Lacing

=(H+V×INT((P−1)÷2)+√(H²+(V×2)²)+L)×2+√(H²+V²)×INT(P÷2)+√(H²+(V×3)²)×INT((P−4)÷2)

=(H+V*INT((P-1)/2)+SQRT(H*H+V*V*4)+L)*2+SQRT(H*H+V*V)*INT(P/2)+SQRT(H*H+V*V*9)*INT((P-4)/2)

### Footbag Lacing

Method 1 (Basic):

=(H+V×5+√(H²+V²)×(P−4)+L)×2

=(H+V*5+SQRT(H*H+V*V)*(P-4)+L)*2

Method 2 (Corkscrew):

=(H+V×6+√(H²+V²)×(P−4)+L)×2

=(H+V*6+SQRT(H*H+V*V)*(P-4)+L)*2

(Method 2 approximates 50% longer on 2 x verticals wrapped around edges)

Method 3 (Extended):

=(H+V×8+√(H²+V²)×(P−5)+L)×2

=(H+V*8+SQRT(H*H+V*V)*(P-5)+L)*2

Method 4 (Double extended):

=(H+V×10+√(H²+V²)×(P−5)+L)×2

=(H+V*10+SQRT(H*H+V*V)*(P-5)+L)*2

### Gap Lacing

Method 1 (Single vertical) (same formula as Chevron Lacing)

=(H+V+√(H²+V²)×(P−2)+L)×2

=(H+V+SQRT(H*H+V*V)*(P-2)+L)*2

Method 2 (Double vertical):

=(H+V×2+√(H²+V²)×(P−3)+L)×2

=(H+V*2+SQRT(H*H+V*V)*(P-3)+L)*2

### Gippo Lacing

=H×(P−2)+V×2+√(H²+V²)×(P−4)+√(H²+(V×2)²)+√(H²+(V×INT((P+1)÷2))²)×2+√(H²+(V×(P−2))²)+L×4

=H*(P-2)+V*2+SQRT(H*H+V*V)*(P-4)+SQRT(H*H+V*V*4)+SQRT(H*H+V*INT((P+1)/2)*V*INT((P+1)/2))*2+SQRT(H*H+V*(P-2)*V*(P-2))+L*4

### Half & Half / Criss Cross Lacing

Method 1 (Bi-color shoelace) (same formula as Criss Cross Lacing):

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

Method 2 (Knotted halves, each half-shoelace):

=H+√(H²+V²)×(P−1)+L+50 mm

=H+SQRT(H*H+V*V)*(P-1)+L+50

(This allows 50 mm = 2 inches for the joining knot)

Method 3 (Separate halves, each half-shoelace):

=H÷2+√(H²+V²)×(P−1)+L+75 mm

=H/2+SQRT(H*H+V*V)*(P-1)+L+75

(This allows 75 mm = 3 inches for the anchoring knot)

### Half & Half / Straight Bar Lacing

Method 1 (Bi-color shoelace) (same formula as Straight Bar Lacing):

=(H×INT((P+1)÷2)+V×(P−1)+L)×2

=(H*INT((P+1)/2)+V*(P-1)+L)*2

Method 2 (Knotted halves), Half-shoelace 1 (Bottom):

=H×(INT(P÷2)+0.5)+V×(P−0.5)+L+50 mm

=H*(INT(P/2)+0.5)+V*(P-0.5)+L+50

(This allows 50 mm = 2 inches for the joining knot)

Method 2 (Knotted halves), Half-shoelace 2 (Second):

=H×((P−1)÷2+(P MODULO 2)×1.5)+V×(P−1.5)+L+50 mm

=H*((P-1)/2+MOD(P,2)*1.5)+V*(P-1.5)+L+50

(This allows 50 mm = 2 inches for the joining knot)

Method 3 (Separate halves), Half-shoelace 1 (Bottom, Longer):

=H×(INT(P÷2)+0.5)+V×(P−1)+L+75 mm

=H*(INT(P/2)+0.5)+V*(P-1)+L+75

(This allows 75 mm = 3 inches for the anchoring knot)

Method 3 (Separate halves), Half-shoelace 2 (Second, Shorter):

=H×(INT((P−1)÷2)+0.5)+V×(P−2)+L+75 mm

=H*(INT((P-1)/2)+0.5)+V*(P-2)+L+75

(This allows 75 mm = 3 inches for the anchoring knot)

### Hash Lacing

Method 1 (Even number of eyelet pairs, Skip eyelets near ends, Shorter):

=(H+L)×2+V×(P−4)+√(H²+(V×3)²)×(P−2)

=(H+L)*2+V*(P-4)+SQRT(H*H+V*V*9)*(P-2)

Method 2 (Even number of eyelet pairs, Use all eyelets, Longer):

=(H+L)×2+V×(P−2)+√(H²+(V×2)²)×4+√(H²+(V×3)²)×(P−4)

=(H+L)*2+V*(P-2)+SQRT(H*H+V*V*4)*4+SQRT(H*H+V*V*9)*(P-4)

Method 3 (Odd number of eyelet pairs, Skip eyelets near one end):

=(H+√(H²+(V×2)²)+L)×2+(V+√(H²+(V×3)²))×(P−3)

=(H+SQRT(H*H+V*V*4)+L)*2+(V+SQRT(H*H+V*V*9))*(P-3)

### Hexagram Lacing

=(H×(P+4)÷5+L)×2+(V+SQRT(H²+(V×3)²))×(P−1)÷5×4

=(H*(P+4)/5+L)*2+(V+SQRT(H*H+V*V*9))*(P-1)/5*4

(Only applicable when number of eyelet pairs P = 6, 11, 16, 21, 26, etc.)

### Hidden Knot Lacing (same formula as Straight Bar Lacing)

=(H×INT((P+1)÷2)+V×(P−1)+L)×2

=(H*INT((P+1)/2)+V*(P-1)+L)*2

### Hiking / Biking Lacing (same formula as Straight Bar Lacing)

=(H×INT((P+1)÷2)+V×(P−1)+L)×2

=(H*INT((P+1)/2)+V*(P-1)+L)*2

### Hill Valley Lacing

=(H+V)×(2−(P MODULO 2))+SQRT(H×H+V×V)×((P MODULO 2)+INT((P−1)/2)×2.06)+L×2

=(H+V)*(2-MOD(P,2))+SQRT(H*H+V*V)*(MOD(P,2)+INT((P-1)/2)*2.06)+L*2

(This approximates 3% longer diagonals to allow for loop unders)

### Knotted Lacing

=(H+√(H²+V²)×1.03×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*1.03*(P-1)+L)*2

(This approximates 3% longer diagonals to allow for knots)

### Knotted Segment Lacing

=(H+√(H²+V²)×(P−0.75)+L)×2

=(H+SQRT(H*H+V*V)*(P-0.75)+L)*2

(This approximates 25% longer on two diagonals to allow for knot)

Method 1 (No lock at top, Shorter):

=((H+V)×(P−1)+L)×2

=((H+V)*(P-1)+L)*2

Method 2 (With lock at top, Longer):

=((H+V)×P−V+L)×2

=((H+V)*P-V+L)*2

### Lattice Lacing

Method 1 (Single verticals, Shorter):

=(H+L)×2+(V×4+√(H²+(V×3)²)×6)×(P−1)÷5

=(H+L)*2+(V*4+SQRT(H*H+V*V*9)*6)*(P-1)/5

Method 2 (Double verticals, Longer):

=(H+L)×2+(V×8+√(H²+(V×3)²)×6)×(P−1)÷5

=(H+L)*2+(V*8+SQRT(H*H+V*V*9)*6)*(P-1)/5

(Only applicable when number of eyelet pairs P = 6, 11, 16, 21, 26, etc.)

### Left Right Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### Lightning Lacing

=H×(2−(P MODULO 2))+√(H²+V²)×(P−1)+√(H²+(V×(P−1))²)+(V×INT((P−1)÷2)+L)×2

=H*(2-MOD(P,2))+SQRT(H*H+V*V)*(P-1)+SQRT(H*H+(V*(P-1))*(V*(P-1)))+(V*INT((P-1)/2)+L)*2

### Lock Lacing

Method 1 (High lock, Shorter):

=(H+V+√(H²+V²)×(P−2)+√(H²+(V÷2)²)+L)×2

=(H+V+SQRT(H*H+V*V)*(P-2)+SQRT(H*H+V*V/4)+L)*2

Method 2 (Low lock, Medium):

=(H+V+√(H²+V²)×(P−3)+√(H²+(V×2)²)+√(H²+(V÷2)²)+L)×2

=(H+V+SQRT(H*H+V*V)*(P-3)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V/4)+L)*2

Method 3 (Looped lock, Longer):

=H×4.1+(√(H²+V²)×(P−1)+L)×2

=H*4.1+(SQRT(H*H+V*V)*(P-1)+L)*2

(This approximates 5% longer on two horizontals to allow for loops)

### Locked Double Helix Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### NASA Space Boot Lacing (same formula as Train Track Lacing)

=((H+V)×(P−1)+L)×2

=((H+V)*(P-1)+L)*2

### Loop Back Lacing

=(H+√(H²+V²)×1.05×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*1.05*(P-1)+L)*2

(This approximates 5% longer diagonals to allow for loop backs)

### One Handed Lacing

=H×P+√(H²+V²)×(P−1)+L×1.25

=H*P+SQRT(H*H+V*V)*(P-1)+L*1.25

(This approximates the tied off end at 1/4 the length of the loose end)

### Over Under Lacing (same formula as Criss Cross Lacing)

=(H+√(H²+V²)×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*(P-1)+L)*2

### Pentagram Lacing

Method 1 or 2 (Upright pentagrams, Longer):

=H×3+V×(P−2)×4+(√(H²+(V×(P−3))²)+√((H÷2)²+(V×(P−2))²)+L)×2

=H*3+V*(P-2)*4+(SQRT(H*H+V*(P-3)*V*(P-3))+SQRT(H*H/4+V*(P-2)*V*(P-2))+L)*2

Method 3 (Inverted pentagram, Shorter):

=H×3+(V×(P−1)+√(H²+(V×(P−3))²)+√((H÷2)²+(V×(P−2))²)+L)×2

=H*3+(V*(P-1)+SQRT(H*H+V*(P-3)*V*(P-3))+SQRT(H*H/4+V*(P-2)*V*(P-2))+L)*2

### Perspective Lacing

Shoes with 4 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+L)×2+V×2

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+L)*2+V*2

Shoes with 5 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+L)×2+V×4

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+L)*2+V*4

Shoes with 6 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+L)×2+V×6

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+L)*2+V*6

Shoes with 7 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+L)×2+V×8

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+L)*2+V*8

Shoes with 8 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+√(H²+(V×4)²)+L)×2+V×6

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+SQRT(H*H+V*V*16)+L)*2+V*6

### Progressive Lacing

Shoes with 4 Pairs of eyelets:

=(H+√(H²+V²)+√(H²+(V×2)²)+L)×2

=(H+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+L)*2

Shoes with 5 Pairs of eyelets:

=(H+√(H²+V²)×2+√(H²+(V×2)²)+L)×2

=(H+SQRT(H*H+V*V)*2+SQRT(H*H+V*V*4)+L)*2

Shoes with 6 Pairs of eyelets:

=(H+V+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+L)×2

=(H+V+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+L)*2

Shoes with 7 Pairs of eyelets:

=(H+V+√(H²+V²)×2+√(H²+(V×2)²)+√(H²+(V×3)²)+L)×2

=(H+V+SQRT(H*H+V*V)*2+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+L)*2

Shoes with 8 Pairs of eyelets:
Method 1 (High horizontal section, Shorter):

=(H+V×2+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+√(H²+(V×4)²)+L)×2

=(H+V*2+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+SQRT(H*H+V*V*16)+L)*2

Shoes with 8 Pairs of eyelets:
Method 2 (Low horizontal section, Longer):

=(H+V×5+√(H²+V²)+√(H²+(V×2)²)+√(H²+(V×3)²)+√(H²+(V×4)²)+L)×2

=(H+V*5+SQRT(H*H+V*V)+SQRT(H*H+V*V*4)+SQRT(H*H+V*V*9)+SQRT(H*H+V*V*16)+L)*2

=H×(P−2+(P MODULO 2))+V×((P−2)×2+(P MODULO 2))×2+L×2

=H*(P-2+MOD(P,2))+V*((P-2)*2+MOD(P,2))*2+L*2

### Quick Tight Lacing

=H×P+√(H²+V²)×(P−2)+√(H²+(V×INT((P+1)÷2))²)+√(H²+(V×INT(P÷2))²)+L×2

=H*P+SQRT(H*H+V*V)*(P-2)+SQRT(H*H+V*INT((P+1)/2)*V*INT((P+1)/2))+SQRT(H*H+V*INT(P/2)*V*INT(P/2))+L*2

### Riding Boot Lacing (same formula as Shoe Shop Lacing)

=H×P+√(H²+V²)×(P−1)+√(H²+(V×(P−1))²)+L×2

=H*P+SQRT(H*H+V*V)*(P-1)+SQRT(H*H+V*(P-1)*V*(P-1))+L*2

### Roman Lacing

Shoes with 4, 10, 16, 22, etc. sets of eyelets:
Method 1 ("I" at bottom, Short):

=(H×(P+2)+V×(P×5−8))÷3+(√(H²+V²)×(P−1)÷3+L)×2

=(H*(P+2)+V*(P*5-8))/3+(SQRT(H*H+V*V)*(P-1)/3+L)*2

Shoes with 4, 10, 16, 22, etc. sets of eyelets:
Method 2 ("X" at bottom, Long):

=(H×(P+2)+V×(P×5−2))÷3+(√(H²+V²)×(P−1)÷3+L)×2

=(H*(P+2)+V*(P*5-2))/3+(SQRT(H*H+V*V)*(P-1)/3+L)*2

Shoes with 8, 14, 20, 26, etc. sets of eyelets:
Method 1 ("I" at bottom, Short):

=(H×(P+4)+V×(P×5−4))÷3+(√(H²+V²)×(P−2)÷3+L)×2

=(H*(P+4)+V*(P*5-4))/3+(SQRT(H*H+V*V)*(P-2)/3+L)*2

Shoes with 8, 14, 20, 26, etc. sets of eyelets:
Method 2 ("X" at bottom, Ends tied at side, Medium):

=(H×(P−2)+V×(P×5−4))÷3+(√(H²+V²)×(P+1)÷3+L)×2

=(H*(P-2)+V*(P*5-4))/3+(SQRT(H*H+V*V)*(P+1)/3+L)*2

Shoes with 8, 14, 20, 26, etc. sets of eyelets:
Method 3 ("X" at bottom, Ends tied across top, Long):

=(H×(P+4)+V×(P×5−10))÷3+(√(H²+V²)×(P+1)÷3+L)×2

=(H*(P+4)+V*(P*5-10))/3+(SQRT(H*H+V*V)*(P+1)/3+L)*2

All other combinations:

=(H×INT((P+5)÷6)+V×INT((P−1)×5÷6)+√(H²+V²)×INT((P+1)÷3)+L)×2

=(H*INT((P+5)/6)+V*INT((P-1)*5/6)+SQRT(H*H+V*V)*INT((P+1)/3)+L)*2

### Sawtooth Lacing

=H×P+√(H²+(V×2)²)×(P−2)+(V+L)×2

=H*P+SQRT(H*H+V*V*4)*(P-2)+(V+L)*2

### Segmented Lacing

Lace 1 (Shorter segment):

=(H+√(H²+V²)×INT((P−2)÷2)+L)×2

=(H+SQRT(H*H+V*V)*INT((P-2)/2)+L)*2

Lace 2 (Longer segment):

=(H+√(H²+V²)×INT((P−1)÷2)+L)×2

=(H+SQRT(H*H+V*V)*INT((P-1)/2)+L)*2

(For even numbers of eyelet pairs, both formulas work out the same)

### Shoe Shop Lacing

Method 1 (Long diagonal, Longer) (same formula as Riding Boot Lacing):

=H×P+√(H²+V²)×(P−1)+√(H²+(V×(P−1))²)+L×2

=H*P+SQRT(H*H+V*V)*(P-1)+SQRT(H*H+V*(P-1)*V*(P-1))+L*2

Method 2 (Long straight, Shorter):

=(H+V)×P+√(H²+V²)×(P−2)+L×2

=(H+V)*P+SQRT(H*H+V*V)*(P-2)+L*2

### Spider Web Lacing

=(H+(V+√(H²+(V×2)²))×(P−2)+L)×2

=(H+(V+SQRT(H*H+V*V*4))*(P-2)+L)*2

### Starburst Lacing

=(H+V×INT(P÷2)+L)×2 ...
... +√(H²+(V×2)²)×2   (for 3 or more eyelet pairs) ...
... +√(H²+(V×4)²)×2   (for 5 or more eyelet pairs) ...
... +√(H²+(V×6)²)×2   (for 7 or more eyelet pairs) ...
... +√(H²+(V×8)²)×2   (for 9 or more eyelet pairs) ... (etc.)

=(H+V*INT(P/2)+L)*2 ...
... +SQRT(H*H+V*V*2*2)*2   (for 3 or more eyelet pairs) ...
... +SQRT(H*H+V*V*4*4)*2   (for 5 or more eyelet pairs) ...
... +SQRT(H*H+V*V*6*6)*2   (for 7 or more eyelet pairs) ...
... +SQRT(H*H+V*V*8*8)*2   (for 9 or more eyelet pairs) ... (etc.)

### Straight Bar Lacing

=(H×INT((P+1)÷2)+V×(P−1)+L)×2

=(H*INT((P+1)/2)+V*(P-1)+L)*2

### Straight Easy Lacing (same formula as Straight Bar Lacing)

=(H×INT((P+1)÷2)+V×(P−1)+L)×2

=(H*INT((P+1)/2)+V*(P-1)+L)*2

### Straight European Lacing

=H×P+(√(H²+V²)+L)×2+√(H²+(V×2)²)×(P−2)

=H*P+(SQRT(H*H+V*V)+L)*2+SQRT(H*H+V*V*4)*(P-2)

### Supernova Lacing

=(H+L)×2 ...
... +√(H²+(V×1)²)×2   (for 2 or more eyelet pairs) ...
... +√(H²+(V×2)²)×2   (for 3 or more eyelet pairs) ...
... +√(H²+(V×3)²)×2   (for 4 or more eyelet pairs) ...
... +√(H²+(V×4)²)×2   (for 5 or more eyelet pairs) ... (etc.)

=(H+L)*2 ...
... +SQRT(H*H+V*V*1*1)*2   (for 2 or more eyelet pairs) ...
... +SQRT(H*H+V*V*2*2)*2   (for 3 or more eyelet pairs) ...
... +SQRT(H*H+V*V*3*3)*2   (for 4 or more eyelet pairs) ...
... +SQRT(H*H+V*V*4*4)*2   (for 5 or more eyelet pairs) ... (etc.)

### Train Track Lacing (same formula as NASA Space Boot Lacing)

=((H+V)×(P−1)+L)×2

=((H+V)*(P-1)+L)*2

### Twistie Lacing

=(H+√(H²+V²)×1.07×(P−1)+L)×2

=(H+SQRT(H*H+V*V)*1.07*(P-1)+L)*2

(This approximates 7% longer diagonals to allow for twists)

### Two-One-Three Lacing

=(H+√(H²+V²)×(P−3)+√(H²+(V×2)²)×2+L)×2

=(H+SQRT(H*H+V*V)*(P-3)+SQRT(H*H+V*V*4)*2+L)*2

### Ukrainian Lacing

Method 1 (Ends stop-knotted):

=H+(√(H²+V²)×(P−2)+L)×2

=H+(SQRT(H*H+V*V)*(P-2)+L)*2

Method 2 (Ends tied together):

=(H+√(H²+V²)×(P−2)+L)×2

=(H+SQRT(H*H+V*V)*(P-2)+L)*2

### Waffle Lacing

=(H+V×(P−3)+√(H²+(V×2)²)×(P−2)+L)×2

=(H+V*(P-3)+SQRT(H*H+V*V*4)*(P-2)+L)*2

=(H+V×(P−1)+L)×2

=(H+V*(P-1)+L)*2

### Woven Lacing

=(H+√((H×3)²+(V×3)²)×1.05×(P−1)+L)×2

=(H+SQRT(H*H*9+V*V*9)*1.05*(P-1)+L)*2

(This approximates 5% longer diagonals to allow for weaving)

### Zig Zag Lacing

=(H+L)×2+(V+√((H×2)²+V²))×(P−1)

=(H+L)*2+(V+SQRT(H*H*4+V*V))*(P-1)

### Zipper Lacing

=H×(P+1)+√(H²+(V×2)²)×(P−1)+L×2

=H*(P+1)+SQRT(H*H+V*V*4)*(P-1)+L*2

(This approximates diagonals at half the horizontal spacing)

### Lug Bow Tie Lacing

Method 1 (Verticals at bottom, Shorter):

=(H+V×INT(P÷2)+W×INT((P+1)÷2)+√(H²+(V−W)²)×INT((P−1)÷2)+L)×2

=(H+V*INT(P/2)+W*INT((P+1)/2)+SQRT(H*H+(V-W)*(V-W))*INT((P-1)/2)+L)*2

Method 2 (Diagonals at bottom, Longer):

=(H+V×INT((P−1)÷2)+W×INT(P÷2+1)+√(H²+(V−W)²)×INT(P÷2)+L)×2

=(H+V*INT((P-1)/2)+W*INT(P/2+1)+SQRT(H*H+(V-W)*(V-W))*INT(P/2)+L)*2

(For odd numbers of lug pairs, both formulas work out the same)

### Lug Criss Cross Lacing

=(H+W×P+√(H²+(V−W)²)×(P−1)+L)×2

=(H+W*P+SQRT(H*H+(V-W)*(V-W))*(P-1)+L)*2

### Lug Double Lacing

Lace 1 (Bottom, Longer):

=(H+W×INT((P+1)÷2)+√(H²+(V×2−W)²)×INT((P−1)÷2)+L)×2

=(H+W*INT((P+1)/2)+SQRT(H*H+(V*2-W)*(V*2-W))*INT((P-1)/2)+L)*2

Lace 2 (Second, Shorter):

=(H+W×INT(P÷2)+√(H²+(V×2−W)²)×INT((P−2)÷2)+L)×2

=(H+W*INT(P/2)+SQRT(H*H+(V*2-W)*(V*2-W))*INT((P-2)/2)+L)*2

(For even numbers of lug pairs, both formulas work out the same)

### Lug Double Back Lacing

=(H+W×P+√(H²+V²)+√(H²+(V×2−W)²)×(P−2)+L)×2

=(H+W*P+SQRT(H*H+V*V)+SQRT(H*H+(V*2-W)*(V*2-W))*(P-2)+L)*2

### Lug Hash Lacing

=(H+W×P+√(H²+(V+W)²)×(P−1)+L)×2

=(H+W*P+SQRT(H*H+(V+W)*(V+W))*(P-1)+L)*2

### Lug Hexagram Lacing

=(H×(P+3)+W×(P×3+1))÷2+√(H²+(V×2)²)×(P−1)+L×2

=(H*(P+3)+W*(P*3+1))/2+SQRT(H*H+V*V*4)*(P-1)+L*2

(Only applicable when number of lug pairs P = 5, 9, 13, 17, 21, etc.)

### Lug Hiking / Biking Lacing

=(H+V+W×(P−1)+√(H²+(V−W)²)×(P−2)+L)×2

=(H+V+W*(P-1)+SQRT(H*H+(V-W)*(V-W))*(P-2)+L)*2

### Lug Infinity Lacing

=(H+V×(P−1)+W×(P+1)+√(H²+W²)×P+L)×2

=(H+V*(P-1)+W*(P+1)+SQRT(H*H+W*W)*P+L)*2

### Lug Knotted Lacing

=(H+W×P+√(H²+(V−W)²)×1.03×(P−1)+L)×2

=(H+W*P+SQRT(H*H+(V-W)*(V-W))*1.03*(P-1)+L)*2

(This approximates 3% longer diagonals to allow for knots)

### Lug Knotted Segment Lacing

=(H+W×P+√(H²+(V−W)²)×(P−0.75)+L)×2

=(H+W*P+SQRT(H*H+(V-W)*(V-W))*(P-0.75)+L)*2

(This approximates 25% longer on two diagonals to allow for knot)

Method 1 (No lock at top, Shorter):

=(H+(V+W)×(P−1)+√(H²+W²)×(P−2)+L)×2

=(H+(V+W)*(P-1)+SQRT(H*H+W*W)*(P-2)+L)*2

Method 2 (With lock at top, Longer):

=(H+(V+W+√(H²+W²))×(P−1)+L)×2

=(H+(V+W+SQRT(H*H+W*W))*(P-1)+L)*2

### Lug Lattice Lacing

=(H+W×P+(√(H²+(V+W)²)+√(H²+(V×2−W)²)×2)×INT((P−1)÷3)+L)×2

=(H+W*P+(SQRT(H*H+(V+W)*(V+W))+SQRT(H*H+(V*2-W)*(V*2-W))*2)*INT((P-1)/3)+L)*2

### Lug Lock Lacing

=(H+V+W×(P−1)+√(H²+(V−W)²)×(P−2)+√(H²+((V+W)÷2)²)+L)×2

=(H+V+W*(P-1)+SQRT(H*H+(V-W)*(V-W))*(P-2)+SQRT(H*H+(V+W)/2*(V+W)/2)+L)*2

### Lug Loop Back Lacing

=(H+W×P+√(H²+(V−W)²)×1.05×(P−1)+L)×2

=(H+W*P+SQRT(H*H+(V-W)*(V-W))*1.05*(P-1)+L)*2

(This approximates 5% longer diagonals to allow for loop backs)

### Lug Segmented Lacing

Lace 1 (Shorter segment):

=(H+W×INT(P÷2)+√(H²+(V−W)²)×INT(P÷2−1)+L)×2

=(H+W*INT(P/2)+SQRT(H*H+(V-W)*(V-W))*INT(P/2-1)+L)*2

Lace 2 (Longer segment):

=(H+W×INT((P+1)÷2)+√(H²+(V−W)²)×INT((P−1)÷2)+L)×2

=(H+W*INT((P+1)/2)+SQRT(H*H+(V-W)*(V-W))*INT((P-1)/2)+L)*2

(For even numbers of lug pairs, both formulas work out the same)

### Lug Shoe Shop Lacing

=(H+W×P+L)×2+√(H²+(V−W)²)×(P×2−3)+√(H²+(V×(P−1)−W)²)

=(H+W*P+L)*2+SQRT(H*H+(V-W)*(V-W))*(P*2-3)+SQRT(H*H+(V*(P-1)-W)*(V*(P-1)-W))

### Lug Spider Web Lacing

=(H+(V+√(H²+(V+V+W)²)×(P−2)+W×(P−1)+L)×2

=(H+(V+SQRT(H*H+(V+V+W)*(V+V+W))*(P-2)+W*(P-1)+L)*2

### Lug Straight Bar Lacing

Method 1 (Single pass at top/bottom, Shorter):

=((H+V+W)×(P−1)+L)×2

=((H+V+W)*(P-1)+L)*2

Method 2 (Single pass at top/bottom, Longer):

=((H+W)×(P+1)+V×(P−1)+L)×2

=((H+W)*(P+1)+V*(P-1)+L)*2

### Lug Twistie Lacing

=(H+W×P+√(H²+(V−W)²)×1.07×(P−1)+L)×2

=(H+W*P+SQRT(H*H+(V-W)*(V-W))*1.07*(P-1)+L)*2

(This approximates 7% longer diagonals to allow for twists)

### Lug Zipper Lacing

=((H+√(H²+(V+W)²)×(P−1))×1.03+W×P+L)×2

=((H+SQRT(H*H+(V+W)*(V+W))*(P-1))*1.03+W*P+L)*2

(This approximates 3% longer segments to allow for knots)

NOTE: These forumlas are theoretically accurate, but in practice they will be out a little depending on the accuracy of any approximations, the diameter of the eyelets, depth of the eyelets, variations in distances between eyelets, thickness of the laces, elasticity of the laces, how tightly they are laced, how complex a knot is used, the curvature of the top of your foot, even the thickness of your socks!